2021-08-21 17:00:27 吉林公务员考试网 jl.huatu.com 文章来源:通化华图
数量关系之工程问题
在工程问题中,有一个核心公式,就是工作量=工作效率×工作时间,其中工作效率是工程问题的核心。
工程问题研究的是工作量、工作时间和工作效率之间的关系,解题的关键往往是求出工作效率,进而找到解题的思路。常用解法有赋值法、代入法以及列方程求解。
工作量=工作效率×工作时间。解决工程问题的思路就是依据上述等量关系劣等是,进而找到题目的答案在具体操作过程中,主要有以下三类题型:
已知工作效率等量关系:题干特征是没有告诉每个人完成工作的时间,二是告诉他们之间工作效率的等量关系,此时采用赋值法解决。根据工作效率的等量关系直接赋值工作效率为具体的数值。列出等量关系,进而得到答案。
已知完成工作时间:体感特征是已知每个人完成工作所需的时间,此时采用赋值法解决。令工作量为工作时间的最小公倍数,进而得到每个人的工作效率,列出等量关系,进而得出答案。
其他题型:若题干不符合上述两种情况,一般选择列方程解题,工作效率设为未知数,列出等量关系,进而找到效率之间的等量关系,从而得到题目的答案。
例题:
【例1】同时大阿凯游泳池 的AB两个进水管,家门水需要一小时30分钟,且A管比B管多进水180立方米若单独打开A管,加满水需要2小水40分钟,则B管每分钟进水多少立方米?( )
A.6 B.7
C.8 D.9
【解析】本题考查工程问题。讲题干的条件用列表法表示如下:
工作时间(分) | ||
A | B | |
状态1 | 90 | 90 |
状态2 | 160 | 0 |
状态2与状态1相比,工作总量相同,A增加的工作量等于B减少的工作量,嘉定A的效率为Va,B的效率为Vb,则(160-90)Va=(90-0)Vb,得到Va:Vb=9:7,即B的效率为7的倍数。因此,答案选择B选项。
【例2】某市有甲乙丙三个工程队,工作效率比为3:4:5.甲单独完成A工程需要25天,丙单独完成B工程需要9天。现由甲负责B工程,乙负责A工程,而丙先帮甲工作若干天后专区帮助乙工作。如果希望两个工程同时开工同时竣工,则丙要帮乙工作多少天?( )
A.6 B.7
C.8 D.9
【解析】本题属于工程问题。设甲效率为3,乙效率为4,丙效率为5.则可得出A工程的工作量为25×3=75,B工程为5×9=45.由于两个工程同时完成,则总天数是(75+45)÷12=100天。乙做10天完成40,剩下35由丙完成,所以丙帮乙做了35÷5=7天。因此,答案选择B选项。
更多备考资料欢迎添加通化华图小客服:ht3500222
以上就是【数量关系之工程问题】的相关介绍,如果要了解更多热门资讯,欢迎关注吉林华图教育。
贴心微信客服