2022-09-14 15:37:26 国家公务员考试网 jl.huatu.com 文章来源:吉林华图
公务员考试行测排列组合之异素均分问题易错点剖析
数量关系是行测考试中难度颇高的一个板块,其主要考察应试者理解、把握事物间量化关系和解决数量关系问题的技能,主要涉及数字和数据关系的分析、推理、判断运算等,其中,排列组合的异素均分问题是很多同学都很难做正确的一类题目,但只要我们研究清楚其问题的本质,便可轻松做对此类题目。
一、从问法上识别“异素均分”问题
异素均分,就概念而言,就是把不同的元素进行平均分组
例如:m个不同的元素,平均分为n个组,一共有多少种情况?
二、“异素均分”问题破解思路
把m个不同的元素平均分成n组,接着我们采用分步的原理来计算,首先从m个元素当中取出a个元素,接着从剩下的元素当中再取出a个元素,一直重复下去,每次都取a个元素,等到全部元素取完便可终止,最后再分析这个过程中所包含的情况数。
1.异素均分分堆问题
例1
某中学有8个运动员,要平均分成2组,一共有几种分法?
A.25 B.70 C.35 D.90
【答案】C。解析:8个运动员平均分成2组,每组4人。首先从8个运动员中选出4个人,接着从剩下的4个人中选出4个人,因为整个过程是分步进行的,所以总的方法数等于各个步骤的方法数相乘,但其实这样做是存在问题的,我们可以把这8个人用abcdefgh这8个字母依次来表示,其中的一种情况可以是abcd为一组,那么剩下的efgh就自然成为另外一组了,当然也有可能是先挑出了efgh为一组,则abcd为一组,这两种分组方式前后对比会发现是同一种分组方式,都是abcd为一组,efgh为一组,所以算重复了2次,实际上的情况数为
通过这个题目我们可以看出,平均分成2组,算重复了2次,如果平均分成3组,会算重复几次呢?
例2
将红、橙、黄、绿、蓝、白6颗不同颜色的玻璃球,平均分成3堆,一共有几种情况?
A.15 B.45 C.60 D.90
【答案】A。解析:6颗不同颜色的玻璃球等同于6个不同的元素,平均分成3堆,每堆2颗玻璃球。首先,从6颗玻璃球中取出2颗;接着从剩下的4颗玻璃球中取2颗;最后从剩下的2颗中选出2颗,同样的我们还是选取其中的一种情况(红橙、黄绿、蓝白)来分析。
通过这个表格的简单罗列,我们便可以清楚地发现这6种情况都是同一种分堆情况,即红橙一堆,黄绿一堆,蓝白一堆,算重复了6次,我们可以进一步总结前一个题目平均分成两组,算重复了2次,本质上是算重复了本题平均分成3组,算重复了6次,所以可以得到异素均分问题平均分成n组,
2.异素均分分配问题
例题
某公司将旗下的6名歌手两两组成一个队,到三个不同的省会城市参加巡演,共有多少种不同的巡演情况?
A.15 B.45 C.60. D.90
【答案】D。解析:本题为异素均分问题,6名歌手两个人为一个队,即平均分成3队。根据前面所讲分成3队,因为3个队是去到3个不同的城市巡演,
相信大家通过上述题目,能对异素均分问题有所了解,建议大家在备考期间多多练习,真正掌握这类问题,也希望能对大家的备考有所帮助。
以上就是【公务员考试行测排列组合之异素均分问题易错点剖析】的相关内容,如果要了解更多公务员考试行测排列组合之异素均分问题易错点剖析相关内容,欢迎关注吉林华图教育。
贴心微信客服