2022-08-29 10:57:15 吉林公务员考试网 jl.huatu.com 文章来源:净月华图
2023国考答题技巧:如何快速解决不定方程问题
数量关系对于大部分考生来说是试卷中难度相对较大的一个部分,而对于其中的题目很多都是采用方程法来解决,利用方程解题的核心在于构造等量关系,在列方程的过程中,会出现一类比较特殊的方程——不定方程,不定方程是指未知数的个数多于独立方程个数的一类方程,它的难点往往在于解方程,那接下来公考通就带着大家一起来学习解不定方程的相关方法。
不定方程的解法一般分为两类,一类是未知数在正整数范围内,通常采用代入排除法、整除、奇偶性、尾数法来解决,另外一类是未知数在任意范围内时,此时采用的方法一般是特值法。
例1、某班给学生分发54个苹果,为了保证每人都有,给每个男生分6个,每个女生分5个,正好分完,求有多少个男生?
A.8
B.6
C.4
D.5
正确答案:C
解析:由题意,等量关系是男女生所分的苹果总量为54,而想把分到的苹果数量表示出来,还要知道男生和女生各自的人数,所以可以设男女生人数分别为x、y。根据题意,可得6x+5y=54。x、y代表人数,那么一定都是正整数。
方法一,代入排除,把四个选项分别代入到方程中的x,同时要满足y也为正整数,那么只有C满足题意。
方法二,整除法:通过观察方程,我们会发现54为6倍数,6x为6的倍数,则5y也是6的倍数,令y=6,可得x=4,满足题意;令y=12,x为非正整数,不满足题意,随着y不断增大x为负数,不满足题意,故本题选C。
方法三,奇偶性:通过观察方程,我们会发现54为偶数,6x为偶数,则5y为偶数,故y为偶数,令y=2,可得x非整数,不满足题意;令y=4,可得x非整数,不满足题意;令y=6,可得x=4,满足题意;y=8、10均不满足题意,故本题选C。
方法四,尾数法:方程中54尾数为4,5y尾数只能为0或5,又因为54为偶数,6x为偶数,偶数+偶数=偶数,则5y为偶数,故5y尾数只能为0,所以6x尾数为4,令x=4,则y=6,满足题意;令x=9,则y=0,不满足题意,故本题选C。
例2、超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。问两种包装盒相差多少个?
A.3
B.4
C.7
D.13
正确答案:D
解析:设大包装盒有x个,小包装盒有y个,则12x+5y=99,其中x、y之和为十多个。5y的尾数只能是5、0,那么对应的12x的尾数只能为4或者9,而12x为偶数,故尾数只能为4。此时,只有x=2或者x=7时满足这一条件。当x=2时,y=15,x+y=17,正好满足条件,y-x=13;当x=7时,y=3,x+y=10,不符合条件,故本题选D。
例3、甲买了3支签字笔、7支圆珠笔和1支铅笔,共花了32元,乙买了4支同样的签字笔、10支圆珠笔和1支铅笔,共花了43元。如果同样的签字笔、圆珠笔、铅笔各买一支,共用多少钱?
A.21元
B.11元
C.10元
D.17元
正确答案:C
解析:根据题意可知,等量关系为两种购买方式所花的钱数已知。那么可以设签字笔、圆珠笔、铅笔的单价分别为a元、b元、c元。根据题意可得3a+7b+c=32①;4a+10b+c=43②,此时a、b、c代表单价,可以是任意范围内,所以求解可以采用特值法,首先令其中一个未知数为0,令b=0,得3a+c=32;4a+c=43,解得a=11,c=-1,故所求a+b+c=11+0+(-1)=10.本题选C。
以上就是【2023国考答题技巧:如何快速解决不定方程问题】的相关介绍,如果要了解更多热门资讯,欢迎关注吉林华图教育。
贴心微信客服
下一篇:没有了