2021-06-29 17:16:42 吉林公务员考试网 jl.huatu.com 文章来源:敦化华图教育
关注【吉林华图】公众号获取更多考试资讯
点击关注
事业单位考试数学运算中的集合容斥问题
数学运算中的集合问题,也称容斥原理是近几年经常出现的题型,考生应将其作为典型题目加以掌握。解决容斥原理的题目,方法是关键。此类题型主要包括两集合问题和三集合问题,并且近几年常出现的容斥问题基本都是涉及三集合的,华图公务员考试研究中心就针对三集合的题目进行汇总。
三集合容斥问题主要有以下三种题型:
1、三集合标准型核心公式
2、三集合图示标数型(文氏图或者叫做韦恩图法)
a.特别注意“满足某条件”和“只满足某条件”的区别;
b.特别注意有没有“三个条件都不满足的情形”;
3、三集合整体重复型核心公式
三集合容斥问题中,有些条件未知时,就不能直接使用标准型公式,而是运用整体重复型公式同样可以解答。特别当题目中说明分别满足一种、两种、三种条件的个数时,使用整体重复型公式。并且,三集合整体重复型公式是现在国家公务员考试考查三集合容斥问题的重点。另外,可利用尾数法进行快速求解。
原理:在三集合题型中,假设满足三个条件的元素数量分别时A、B和C,而至少满足三个条件之一的元素的总量为W。其中,满足一个条件的元素数量为x,满足两个条件的元素数量为y,满足三个条件的元素数量为z,根据右图可以得到下满两个等式:
W=x+y+z
A+B+C=x×1+y×2+z×3
通过几个例题阐述三集合容斥的相关内容:
【例1】对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有( )。
A.22人 B.28人 C.30人 D.36人
【解析】设A=喜欢看球赛的人58,B=喜欢看戏剧的人38,C=喜欢看电影的人52,则有:
A∩B=既喜欢看球赛的人又喜欢看戏剧的人18
B∩C=既喜欢看电影又喜欢看戏剧的人16
A∩B∩C=三种都喜欢看的人12
A∪B∪C=看球赛和电影、戏剧至少喜欢一种100
由集合运算公式可知:C∩A = A+B+C-(A∪B∪C+A∩B+B∩C-A∩B∩C)
=148-(100+18+16-12)=26
所以,只喜欢看电影的人=C-B∩C-C∩A+A∩B∩C
=52-16-26+12=22
注:这道题运用公式运算比较复杂,运用文氏画图法我们很快就可以看出结果。文氏解法如下:
由题意知:(40-x)+x+(36-x)+6+12+4+16=100, 解得 x=14; 则只喜欢看电影的人有 36-x=2
免费领取考前资料详询:0433-8916111
以上就是【事业单位考试数学运算中的集合容斥问题】的相关介绍,如果要了解更多热门资讯,欢迎关注吉林华图教育。
贴心微信客服