2017国家公务员考试:拉灯问题升级版之三集合容斥原理型
国家公务员考试网发布2017国家公务员考试:拉灯问题升级版之三集合容斥原理型,下面是关于2017国家公务员考试:拉灯问题升级版之三集合容斥原理型这一问题的具体分析,更多2017国家公务员考试考试答题技巧,请点击国家公务员考试网。 拉灯问题升级版——三集合容斥原理型 例:有1000盏亮着的灯,各有一个拉线开关控制着。现按其顺序编号为1、2、3、4、5······1000,然后将编号为2的倍数的灯线拉一下,再将编号为3的倍数的灯线拉一下,最后将编号为5的倍数的灯线拉一下,三次拉完后,亮着的电灯有多少盏? A.468B.499C.501D.532 【解析】 (1)原来电灯亮着,拉一下,灭了;拉两下,亮着;拉三下,灭了。因此,灯绳被拉动奇数次的灯灭了。此题先求灭着的灯的数量,再求亮着的灯。(2)注意:此题目拉灯的方法不同前三个例题。编号为2的倍数,3的倍数,5的倍数的灯依次拉。可以据此,看做是三集合问题。(3)数据计算:能被2整除的有1000/2=500个,能被3整除的有1000/3=333个,能被5整除的有1000/5=200个;既能被2又能被3整除的有1000/6=166个;同理,能被2,5整除的有100个,能被3,5整除的有66个,能同时被2、3、5整除的有33个。拉奇数次500+333+200-2(166+100+66)+4*33=501个,最开始为亮,奇数次为灭,则亮灯=1000-501=499个,选择B。 拉灯问题,题目本身看起来操作繁琐,但是其中蕴含的数学道理不难,熟练掌握此类型题目的解决思路,熟能生巧。