2022年行测数量关系:小小的篱笆 大大的菜园
2022-04-24 17:00 吉林公选遴选考试 来源:未知
2022年行测数量关系:小小的篱笆 大大的菜园
行测考试中,数量关系题型多样,题目载体丰富多样,今天图图就带大家一起了解其中的一类考点:均值不等式!
大家以前可能接触过类似的题目:如何用固定长度的篱笆围成一个面积最大的菜园?这个题目它无非就是研究和与积之间的关系!所运用的知识点是基于均值不等式的两个结论,我们一起来学习!
什么是均值不等式
若a、b为实数,则
当且仅当a=b时,“=”号成立。
均值不等式的结论
1、若a+b为定值,a、b间的差值越小,a、b乘积越大,当且仅当a=b时,ab取得最大值。
2、若ab为定值,a、b间的差值越小,a、b和越小,当且仅当a=b时,a+b取得最小值。
简记为,和定差小积大,积定差小和小。
经典例题
例1
某农户要用篱笆将自己的菜园围起来,已知篱笆的总长度为48米。请问农户的菜园面积最大为多少平方米?
A.100 B.120 C.144 D.156
【答案】C。解析:设篱笆的长宽分别为a,b,则2×(a+b)=48,可得a+b=24。求菜园的面积最大为多少平方米,即求ab的最大值。根据均值不等式的结论:当a=b=12时,ab取得最大值为12×12=144。故菜园的最大面积为144平方米,正确答案为C。
例2
建造一个容积为16立方米,深为4米的长方体无盖水池,如果池底和池壁的造价分别为每平方米160元和每平方米100元,那么该水池的最低造价是多少元?
A.3980 B.3560 C.3270 D.3840
【答案】D。解析:若假设长方体无盖水池底的边长分别为a、b,则池底的面积为a×b=16÷4=4平方米,则可得水池的最低造价为4×160+(a×4×2+b×4×2)×100=640+800×(a+b),求最低造价,即求a+b的最小值,符合乘积一定,求和最小,当且仅当a=b=2时,a+b的和最小为4,则最低造价为640+800×(a+b)=640+800×(2+2)=3840,故选择D选项。
特殊情况
当题目中要求a与b必须为整数,而当a=b求解出a与b又为非整数时,如何处理呢?只要使得a与b尽可能接近即可,其他结论保持一致。
例3
长方形广场的周长为18米,求该广场的面积最大是多少平方米?(该广场的长和宽必须为整数米)
A.14 B.16 C.20 D.22.25
【答案】C。解析:设长方形广场的长为a,宽为b,则2×(a+b)=18,可得a+b=9,求广场的最大面积为ab。根据均值不等式的结论:和定差小积大,即a+b=9一定,当a=b=4.5时,ab有最大值为20.25。但已知长和宽为整数米,所以当a与b尽可能接近时,即a=4,b=5时,ab有最大值为20,所以广场的面积为20平方米。故正确答案为C。
寄语
以上就是关于均值不等式的两个结论,希望各位同学能够多加练习,未来能够一帆风顺!
贴心微信客服