2021-07-03 13:11:25 吉林公务员考试网 jl.huatu.com 文章来源:通化华图
关注【吉林华图】公众号获取更多考试资讯
点击关注
【数字推理法宝】详解十大数字推理规律。
备考规律一:等差数列及其变式
【例题】7,11,15,( )
A 19 B 20 C 22 D 25
【答案】A选项
这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数。题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间也满足此规律,那么在此基础上对未知的一项进行推理,即15+4=19,第四项应该是19,即答案为A。
(一)等差数列的变形一:
【例题】7,11,16,22,( )
A.28 B.29 C.32 D.33
【答案】B选项
这是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是5;第四个与第三个数字之间的差值是6。假设第五个与第四个数字之间的差值是X,
我们发现数值之间的差值分别为4,5,6,X。很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=7,则第五个数为22+7=29。即答案为B选项。
(二)等差数列的变形二:
【例题】7,11,13,14,( )
A.15 B.14.5 C.16 D.17
【答案】B选项
这也是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是2;第四个与第三个数字之间的差值是1。假设第五个与第四个数字之间的差值是X。
我们发现数值之间的差值分别为4,2,1,X。很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=0.5,则第五个数为14+0.5=14.5。即答案为B选项。
(三)等差数列的变形三:
【例题】7,11,6,12,( )
A.5 B.4 C.16 D.15
【答案】A选项
这也是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是-5;第四个与第三个数字之间的差值是6。假设第五个与第四个数字之间的差值是X。
我们发现数值之间的差值分别为4,-5,6,X。很明显数值之间的差值形成了一个新的等差数列,但各项之间的正负号是不同,由此可以推出X=-7,则第五个数为12+(-7)=5。即答案为A选项。
(三)等差数列的变形四:
【例题】7,11,16,10,3,11,( )
A.20 B.8 C.18 D.15
【答案】A选项
这也是最后一种典型的等差数列的变形,这是目前为止难度最大的一种变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号每“相隔两项”进行交叉变换的规律。题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是5;第四个与第三个数字之间的差值是-6,第五个与第四个数字之间的差值是-7。第六个与第五个数字之间的差值是8,假设第七个与第六个数字之间的差值是X。
总结一下我们发现数值之间的差值分别为4,5,-6,-7,8,X。很明显数值之间的差值形成了一个新的等差数列,但各项之间每“相隔两项”的正负号是不同的,由此可以推出X=9,则第七个数为11+9=20。即答案为A选项。
以上就是【【数字推理法宝】详解十大数字推理规律。】的相关介绍,如果要了解更多热门资讯,欢迎关注吉林华图教育。
贴心微信客服
下一篇:没有了