2021-06-25 13:13:05 吉林公务员考试网 jl.huatu.com 文章来源:九台华图
关注【吉林华图】公众号获取更多考试资讯
点击关注
2022国家公务员考试行测技巧:巧解牛吃草问题.
行程问题可以说是考试行测必考题型之一,而且占比也较大。对于这类问题,很多考生们在中学的时候都学习过,并不陌生。在行程问题中,有这样一种特殊的题型——牛吃草。牛吃草问题是比较特殊的行程问题,它既运用了我们行程问题的基本公式,也利用到了我们的特值思想。在此华图教育将给大家仔细介绍牛吃草问题中最常见的几种题型,如追及型、相遇型、极值型等。
首先我们来看看牛吃草问题的题型特征,也就是当我们在题干中发现哪些信息时,就会想到牛吃草问题的这一考点。
一片草场给一群牛吃,假设吃过的地方永远都不长草,草在不断生长且生长速度固定不变,牛在不断吃草且每头牛每天吃的草量相同,供不同数量的牛吃,需要用不同的时间,给出牛的数量,求时间。
利用特值法,设一头牛一天吃一份草(Po=1),则N=No×Po
题型特征:
草的总量、每头牛每天吃的草量、草每天生长的数量是不变的;
‚题干中有排比句;
ƒ影响草量的2个因素:牛的数量和草本身的生长和枯萎速度。
接着我们来看看牛吃草问题的几种常见题型。
第一种:追及型
一个量使草原变大,一个量使原草量变小。
原有草量=(牛每天吃掉的量-草每天生长的量)× 天数
M=(N-x)×T
【例题1】牧场上一片青草,每天牧草都匀速生长。这片牧草可供10头牛吃20天,或者可供15头牛吃10天。问:可供25头牛吃几天?
A.2 B.3 C.4 D.5
【答案】D
【解析】牛在吃草,草在匀速生长,所以是牛吃草问题中的追及问题。利用公式,设每头牛每天吃的草量为“1”,每天生长的草量为x,可供25头牛吃t天,所以(10-x)×20=(15-x)×10=(25-x)×t,先求得x=5,再求得t=5。
第二种:相遇型
两个量使原草量减少。
原有草量=(牛每天吃掉的量+草每天生长的量)×天数
M=(N+x)×T
【例题2】由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。照此计算,可供多少头牛吃10天?
A.3 B.5 C.6 D.7
【答案】B
【解析】牛在吃草,草在匀速减少,所以是牛吃草问题中的相遇问题。利用公式,设每头牛每天吃的草量为“1”,每天生长的草量为x,可供N头牛吃10天,所以(20+x)×5=(15+x)×6=(N+x)×10,先求得x=10,再求得N=5。
第三种:极值型
问法发生变化:为了保持草永远吃不完,最多放几头牛。
→牛每天吃掉的草量=每天生长的草量
【例题3】牧场上一片青草,每天牧草都匀速生长。这片牧草可供10头牛吃20天,或者可供15头牛吃10天。问为了保持草永远吃不完,那么最多能放几头牛?
A.3 B.4 C.5 D.6
【答案】C
【解析】牛在吃草,草在匀速生长,所以是牛吃草问题中的追及问题,原有草量=(牛每天吃掉的量-每天生长的量)× 天数,设每头牛每天吃的草量为“1”,每天生长的草量为x,所以(10-x)×20=(15-x)×10=(25-x)×t,求得x=5,即每天生长的草量为5,要保证永远吃不完,那就要让每天吃掉的草量等于每天生长的草量,所以最多能放5头牛。
第四种:多个草场牛吃草问题
不同牛在不同草场上几种不同吃法。
将面积转化为“最小公倍数”,同时对牛的数量进行相应的转化。
【例题4】20头牛,吃30公亩牧场的草15天可吃尽,15头牛吃同样牧场25公亩的草,30天可吃尽。请问几头牛吃同样牧场50公亩的草,12天可吃尽?
A.8 B.10 C.12 D.15
【答案】C
【解析】取30、25和50的最小公倍数300,所以原题等价于“300公亩的牧场可供200头牛吃15天,可供180头牛吃30天,那么可供多少头牛吃12天”。设每头牛每天吃的草量为1,草长的速度为x,300公亩的草可供N头牛吃12天,那么有(200-x)×15=(180-x)×30=(N-x)×12,解得x=160,N=210,210÷6=35,所以35头牛吃同样牧场50公亩的草,12天可吃尽。
所以,其实牛吃草问题公式难度不大,其解题的重点在于判断题目的题型特征,只要判断出考察的类型,利用基本公式快速求解即可。
九台华图:0431-82331399
以上就是【2022国家公务员考试行测技巧:巧解牛吃草问题.】的相关介绍,如果要了解更多热门资讯,欢迎关注吉林华图教育。
贴心微信客服
下一篇:没有了